Modellierung der Ausbreitung elektromagnetischer Wellen durch Pflanzenmaterial in Erntemaschinen

Autor/innen

  • Andi Günther

DOI:

https://doi.org/10.15150/lt.2022.3275

Abstract

Für die Auslegung eines Ultrabreitband(UWB)-Mikrowellensensorsystem zur Inline-Bestimmung von Feuchtigkeit und Durchsatz in Erntemaschinen müssen Ingenieure die optimale Spezifikation und Konfiguration des Systems identifizieren, z.B. hinsichtlich des Spektralbereichs und der spektralen Auflösung. Um die komplexen Wechselwirkungen der Ausbreitung elektromagnetischer Wellen im Erntekanal von Erntemaschinen besser zu verstehen, wurde aus der Literatur ein vereinfachtes Modell zur Abschätzung der Permittivität des Erntematerials abgeleitet, das in der Lage ist, die Wirkung von Störungen durch Parameter wie Dichte und Temperatur auf das Signal zu modellieren, die hauptsächlich durch das Wasser im Erntematerial hervorgerufen werden. Mit Hilfe der Transfer-Matrix-Methode wurde das Sensorsystem in einer Transmissionskonfiguration modelliert und anhand von Labortestdaten validiert. Eine ausreichende Übereinstimmung der Ergebnisse wird nachgewiesen. Dies ermöglicht es, mit diesem Modell zukünftig Sensor-Setups und Einflüsse verschiedener Hauptparameter zu untersuchen, zu verstehen und zu berücksichtigen.

Literaturhinweise

Balanis, C.A. (1989): Advanced Engineering Electromagnetics. New York, Wiley

Bernhardt, G., Bühlmeier, R.; Claussen, F.; Günther, A.; Heinrich, A.; Paul, C.; Pfitzner, C. (2006): Sensorik für Feldhäcksler zur Unterstützung einer umweltgerechten und teilflächenspezifischen Bewirtschaftung auf Grünland und im Futteranbau (Sensor technology for forage harvesters to support environmentally friendly and site-specific management on grassland and in forage cultivation. Abschlussbericht. Dresden/Braunschweig, Technische Universität Dresden/FAL-Bundesforschungsanstalt für Landwirtschaft

Bosshard, H.H. (2013): Holzkunde: Band 2 Zur Biologie, Physik und Chemie des Holzes. Basel, Springer-Verlag

Böttcher, C.J.F. (1938): The dielectric constant of dipole liquids. Physica 5 (7), pp. 635–639, https://doi.org/10.1016/S0031-8914(38)80012-4

Buchner, R., Barthel, J.; Stauber, J. (1999): The dielectric relaxation of water between 0°C and 35°C. In: Chemical Physics Letters 306 (1–2), pp. 57–63, https://doi.org/10.1016/S0009-2614(99)00455-8

Carlson, N.L. (1967): Dielectric constant of vegetation at 8.5 GHz. Technical Report 1903–5. Columbus (Ohio), Ohio State University, ElectroScience Laboratory

CEM (2018): TMM1D. https://github.com/cm403/cem, accessed on 14 Dec 2020

Chuah, H.T., Lee, K.Y.; Lau, T.W. (1995): Dielectric Constants of Rubber and Oil Palm Leaf samples at X-Band. IEEE Transactions on Geoscience and Remote Sensing 33(1)

Debye, P. (1929): Polar Molecules. New York Chemical Catalog Co., Inc.

Ehlert, D. (2002): PA—Precision Agriculture. Biosystems Engineering 83(1), pp. 47–53, https://doi.org/10.1006/bioe.2002.0101

El-Rayes, M.A.; Ulaby, F.T. (1987): Microwave Dielectric Spectrum of Vegetation-Part I:

Experimental Observations. IEEE Transactions on Geoscience and Remote Sensing GE-25(5), pp. 541–549, https://doi.org/10.1109/TGRS.1987.289832

Ferré, P.A.; Topp, G.C. (2000): Time-domain Reflectometry Techniques for Soil Water Content and Electrical Conductivity Measurements. In: Sensors Update 7(1), pp. 277–300, https://doi.org/10.1002/1616-8984(200001)7:1<277::AID-SEUP277>3.0.CO;2-M

Freye, T. (1980): Untersuchungen zur Trennung von Korn-Spreu-Gemischen durch die Reinungsanlage des Mähdreschers. Hohenheim, Selbstverlag, Institut für Agrartechnik der Universität Hohenheim zu Stuttgart

Hasted, J.B. (1972): Liquid Water: Dielectric Properties. In: Franks, F. (ed.): The Physics and Physical Chemistry of Water. Water. Boston, MA, Springer New York, pp. 255–309, https://doi.org/10.1007/978-1-4684-8334-5_7

Hernandez-Walls, R. (2010): DIELEC: Calculated dielectric constant of sea water. Ensenada B.C. Mexico, FCM-UABC

Hübner, C.; Kaatze, U. (2016): Electromagnetic Moisture Measurement: Principles and Applications. Mannheim, Göttingen, Universitätsverlag Göttingen

Kaatze, U.; Hübner, C. (2010): Electromagnetic techniques for moisture content determination of materials. Measurement Science and Technology 21(8): 082001, https://doi.org/10.1088/0957-0233/21/8/082001

Kim, S., Georgiadis, A.; Tentzeris, M. (2018): Design of Inkjet-Printed RFID-Based Sensor on Paper: Single- and Dual-Tag Sensor Topologies. Sensors 18(6), p. 1958, https://doi.org/10.3390/s18061958

Kraszewski, A.; Nelson, S.O. (1989): Composite model of the complex permittivity of cereal grain. Journal of Agricultural Engineering Research 43, pp. 211–219, https://doi.org/10.1016/S0021-8634(89)80019-8

Loor de, G.P. (1968): Dielectric Properties of Heterogeneous Mixtures Containing Water. Journal of Microwave Power 3(2), pp. 67–73, https://doi.org/10.1080/00222739.1968.11688670

Looyenga, H. (1965): Dielectric constants of homogeneous mixture. Molecular Physics 9(6), pp. 501–511, https://doi.org/10.1080/00268976500100671

Ndife, M.K., Sumnu; G. Bayindirlib, L. (1998): Dielectric properties of six different species of starch at 2450 MHz. In: Food Research International Vol. 31(1), pp. 43–52

Nelson, S. (2015): Dielectric Properties of Agricultural Materials and their Applications. London, San Diego, Waltham, Oxford, Academic Press

Nelson, S.O.; You, T.-S. (1990): Use of Dielectric Mixture Equations for Estimating Permittivities of Solids from Data on Pulverized Samples. MRS Proceedings 195, p. 295, https://doi.org/10.1557/PROC-195-295.

Nyfors, E. (2000): Industrial Microwave Sensors - A Review. Subsurface Sensing Technologies and Application 1, pp. 21-43

Park, M.K., Kim, H.N.; Baek, S.S.; Kang, E.S.; Baek, Y.K.; Kim, D.K. (2007): Dielectric Properties of Alumina Ceramics in the Microwave Frequency at High Temperature. Solid State Phenomena 1, pp. 124–126,

https://doi.org/10.4028/www.scientific.net/SSP.124-126.743

Pascoe, K.J. (2001): Reflectivity and Transmissivity through Layered, Lossy Media: A User-Friendly Approach. Technical Report

Paz, A., Thorin, E.; Topp, C. (2011): Dielectric mixing models for water content determination in woody biomass. In: Wood Science and Technology 45 (2), pp. 249–259, https://doi.org/10.1007/s00226-010-0316-8

Pecovska-Gjorgjevich, M.; Andonovski, A.; Velevska, J. (2012): Dielectric constant and induced dipole moment of edible oils subjected to conventional heating. Macedonian Journal of Chemistry and Chemical Engineering, 31(2), pp. 285–294, https://doi.org/10.20450/mjcce.2012.19

Polder, D.; van Santen, J.H. (1946): The effective permeability of mixture of solids. Physica 12(5), pp. 257-271, https://doi.org/10.1016/S0031-8914(46)80066-1

Riddle, B., Baker-Jarvis, J.; Krupka, J. (2003): Complex permittivity measurements of common plastics over variable temperatures. IEEE Transactions on Microwave Theory and Techniques 51(3), pp. 727–733, https://doi.org/10.1109/TMTT.2003.808730

Rumpf, R.C. (2011): Improved formulation of scattering matrices for semi-analytical methods that is consistent with convention. Progress In Electromagnetics Research B, Vol. 35, pp. 241-261,

https://doi.org/10.2528/PIERB11083107

Sanadiki, B.A.; Mostafavi, M. (1991): Inversion of inhomogeneous continuously varying dielectric profiles using open-ended waveguides. IEEE Transactions on Antennas and Propagation 39(2), pp. 158–163, https://doi.org/10.1109/8.68177

Sihvola, A. (2000): Mixing Rules with Complex Dielectric Coefficients. In: Subsurface Sensing Technologies and Applications Vol. 1(4), p. 23

Somaraju, R.; Trumpf, J. (2006): Frequency, Temperature and Salinity Variation of the Permittivity of Seawater. Antennas and Propagation, IEEE Transactions on 54, pp. 3441–3448, https://doi.org/10.1109/TAP.2006.884290

Stamm, A.J. (1929): Density of Wood Substance, Adsorption by Wood, and Permeability of Wood. The Journal of Physical Chemistry 33(3), pp. 398–414, https://doi.org/10.1021/j150297a008

Tan, E.L. (2006): Hybrid-matrix algorithm for rigorous coupled-wave analysis of multilayered diffraction gratings. In: Journal of Modern Optics 53(4): 417–428, https://doi.org/10.1080/09500340500407701

Tan, H.S. (1981): Microwave measurements and modelling of the permittivity of tropical vegetation samples. Applied Physics 25(3), pp. 351–355, https://doi.org/10.1007/BF00902994

Torgovnikov, G.I. (1993): Dielectric Properties of Wood and Wood-Based Materials. Berlin, Heidelberg, Springer Berlin Heidelberg, https://doi.org/10.1007/978-3-642-77453-9

Ulaby, F.T.; Jedlicka, R.P. (1984): Microwave Dielectric Properties of Plant Materials. IEEE Transactions on Geoscience and Remote Sensing GE-22(4), pp. 406–415, https://doi.org/10.1109/TGRS.1984.350644

Xifré Pérez, E.; Marsal Garví, L.F.; Pallarés Marzal, J. (2007): Design, fabrication and characterization of porous silicon multilayer optical devices. Tarragona, Universitat Rovira i Virgili

Zahedi, Y.; Ghafghazi, H.; Ariffin, S.H.S.; Kassim, N.M. (2011): Feasibility of Electromagnetic Communication in Underwater Wireless Sensor Networks. In: Abd Manaf, A., S. Sahibuddin, R. Ahmad, S. Mohd Daud, E.

El-Qawasmeh (eds.): Informatics Engineering and Information Science. Communications in Computer and Information Science. 253. Vol. Berlin, Heidelberg, Springer Berlin Heidelberg, pp. 614–623, https://doi.org/10.1007/978-3-642-25462-8_55

Zwick, T.; Haala, J.; Wiesbeck, W. (2002): A genetic algorithm for the evaluation of material parameters of compound multilayered structures. IEEE Transactions on Microwave Theory and Techniques 50(4), pp. 1180–1187, https://doi.org/10.1109/22.993422

Downloads

Veröffentlicht

30.05.2022

Zitationsvorschlag

Günther, A. (2022). Modellierung der Ausbreitung elektromagnetischer Wellen durch Pflanzenmaterial in Erntemaschinen. Agricultural engineering.Eu, 77(2). https://doi.org/10.15150/lt.2022.3275

Ausgabe

Rubrik

Fachartikel