Bewertung von verstellbaren Zinkenflügeln unter Bodenbehälterbedingungen
DOI:
https://doi.org/10.15150/lt.2022.3280Abstract
In jüngster Zeit ist die Nachfrage nach Bodenbearbeitungswerkzeugen, die den meisten Feld-anforderungen unter verschiedenen Bedingungen entsprechen, gestiegen. Ein einstellbarer Zinken hat das Potenzial, dieses Ziel zu erreichen. Daher werden in dieser Studie verstellbare Zinkenflügel mit unterschiedlichen Flügelbreiten bei Bodenbearbeitungsgeschwindigkeiten von 1,1 und 3,3 m s-¹ bei Experimenten in Bodenbehältern bewertet. Die Ergebnisse zeigen, dass die Geschwindigkeit und die Flügelbreite einen signifikanten linearen Einfluss auf die horizontal und vertikal wirkende Kräfte haben. Hierbei hat die Geschwindigkeit einen viel höheren Einfluss als die Flügelbreite auf die Kraftanforderung. Die horizontale Kraft nimmt mit zunehmender Flügelbreite zu, während die vertikale Kraft mit zunehmender Flügelbreite abnimmt.
Literaturhinweise
Al-Neama, A.; Herlitzius, T. (2016): New regression model for predicting horizontal forces of single tines using a dummy variable and tine geometric parameters. Landtechnik 71(5), pp. 168-174
Chi, L.; Kushwaha, R. (1990): A non-linear 3-d finite element analysis of soil failure with tillage tools. Journal of Terramechanics 27(4), pp. 343-366
Dedousis, A.; Bartzanas, T. (eds.) (2010): Soil Engineering. Springer-Verlag Berlin Heidelberg, https://dx.doi.org/10.1007/978-3-642-03681-1
Glancey, J. L.; Upadhyaya, S. K. (1995): An improved technique for agricultural implement draught analysis. Soil and Tillage Research 35(4), pp. 175-182, https://doi.org/10.1016/0167-1987(95)00498-X
Glancey, J.; Upadhyaya, S.; Chancellor, W.; Rumsey, J. (1996): Prediction of agricultural implement draft using an instrumented analog tillage tool. Soil and Tillage Research 37(1), pp. 47-65
Godwin, R.; Spoor, G. (1977): Soil failure with narrow tines. Journal of Agricultural Engineering Research 22(4), pp. 213-228
Goryachkin, V. P. (1927): Theory of the plow. Moscow, Promizdat
Grisso , R.; Yasin , M.; Kocher, M. (1996): Tillage tool forces operating in silty clay loam. Transactions of the ASAE 39, pp. 1977-1982
Gupta, P.; Gupta, C.; Pandey, K. (1989): An analytical model for predicting draft forces on convex-type cutting blades. Soil and Tillage Research 14(2), pp. 131-144, https://doi.org/10.1016/0167-1987(89)90027-5
McKyes, E.; Ali, O. (1977): The cutting of soil by a narrow blade. Journal of Terramechanics 14(2), pp. 43-58
Mouazen, A.; Nemenyi, M. (1999): Finite element analysis of subsoiler cutting in non-homogeneous sandy loam soil. Agricultural Engineering Research 51(1-2), pp. 1-15, https://doi.org/10.1016/S0167-1987(99)00015-X
Oni, K.; Clark, S.; Johnson, W. (1992): The effects of design on the draught of undercutter-sweep tillage tools. Soil and Tillage Research 22 (1-2):, pp. 117-130
Onwualu, A.; Watts, K. (1998): Draught and vertical forces obtained from dynamic soil cuttting by plane tillage tools. Soil and Tillage Research 48 (4), pp. 239-253
Owen, G. (1989): Subsoiling forces and tool speed in compact soils. Canadian Agricultural Engineering 31(1), pp. 15-20
Rowe, R.; Barnes, K. (1961): Influence of speed on elements of draft of a tillage tool. Transactions of American Society of Agricultural and Biological Engineers 4, pp. 55-57, https://doi.org/10.13031/2013.41008
Sahu, R. K.; Raheman, H. (2006): Draught Prediction of Agricultural Implements using Reference Tillage Tools in Sandy Clay Loam Soil. Biosystems Engineering 94(2), pp. 275-284
Siemens, J., Weber , J., & Thornburn , T. (1965): Mechanics of soil as influenced by model tillage tools. Transactions of American Society of Agricultural and Biological Engineers 8(1), pp. 1-7
Soucek, R.; Pippig, G. (1990): Maschinen und Geräte für Bodenbearbeitung Düngung und Aussaat. Verlag Technik GmbH, Germany
Stafford, J. (1979): The performance of a rigid tine in relation to soil properties and speed. Journal of Agricultural Engineering Research 24(1), pp. 41-57
Swick , W., & Perumpral , J. (1988): A model for predicting soil tool interaction. Journal of Terramechanics 25, pp. 43-56
Tekeste, M.; Balvanz, L.; Hatfield, J.; Ghorbani, S. (2019): Discrete element modeling of cultivator sweep-to-soil interaction: Worn and hardened edges effects on soil-tool forces and soil flow. Journal of Terramechanics 82, pp. 1–11
Terpstra, R. (1977): Draught forces of tines in beds of glass spheres. Journal of Agricultural Engineering Research 22(2), pp 135-143
Upadhyaya, S. K.; Williams, T. H.; Kemble, L. J.; Collins, N. E. (1984): Energy requirements for chiseling in coastal plain soils. Transactions of the ASAE 27 (6), pp. 1643-1649
Wheeler, P. N.; Godwin, R. J. (1996): Soil Dynamics of Single and Multiple Tines at Speeds up to 20 km/h. Journal of Agricultural Engineering Research 63(3), pp. 243-250
Wismer, R.; Luth, H. (1972): Rate effects in soil cutting. Journal of Terramechanics 8 (3), pp. 11-21
Yong, R., Hanna, A. (1977): Finite element analysis of plane soil cutting. Journal of Terramechanics 14(3), pp. 103-125